Durgapur Steel Plant

প্রম

SHRAM VIR

TRAINING MODULE ON STEEL MELTING SHOP & QUALITY FOR MTT BATCH

BINOD KUMAR PADHI, SR MGR, RCL

Product Segment & Key Customers

CONSTRUCTION

<u>TMT Bars</u> Fe500D,550D, 600, SAIL SeQR

TRANSPORTATION

<u>Wheel & Axles</u> LOCO, COACH & LHB

ENERGY

INFRASTRUCTURE

<u>Light & Medium</u> <u>Structurals</u> Bridge, High rise

For re-rollers : TLT , Wire rods etc

Integrated Steel plant process

Composition of Hot Metal & Steel

Hot Metal

- ✓ **Carbon: 4%-5.5%**
- ✓ Sulfur: 300 to 800 ppm
- Phosphorous: up to3000 ppm

Steel (DSP)

- ✓ Carbon: 0.07% to 0.67%
- ✓ Sulfur: 400ppm Max
- Phosphorous: 400ppm
 Max

The Iron- Iron Carbide phase diagram

AT AT AT ANA

Evolution of steel making process

दश के नाम

Evolution of quality steel making LEVELS OF RESIDUALS (ppm)

इ इ.स.ल. मेरा सेल SAIL

Element	1900	2021
С	2100 (0.21%)	10
O tot	130	5
Η	-	0.8
S	690	5
Ν	35	15
Р	450	<30

Cleanliness Requirements Reported for Steel Products

Product	Maximum imp	Maximum inclusion size	
Line pipe	Total 0:30 ppm	N : 30 ppm	100 μm
Deep drawn sheet	Total 0 : 20 ppm	N : 30 ppm	100 μm
Heavy plate	Total 0 : 20 ppm	N : 30 ppm	Cluster 200 μm Single : 20 μm
Drawn & ironed can	Total 0 : 20 ppm	N : 30 ppm	20 μm
Wire	Total 0:30 ppm	N : 60 ppm	20 μm
Tire cord	Total 0 : 15 ppm	N : 40 ppm	15 μm
Bearing	Total 0 : 10 ppm		15 μm

हर एक

Residuals in Special Steel

Product	Maximum i	Inclusion volume, %	
	Sulphur, %	Phos., %	
Higher Grade Line pipe	0.0005 - 0.0050	0.004 -0.010 H < 1.5	< 0.15
Deep drawn sheet	0.001-0.005	< 0.015 N :15-25ppm T.O. :20-30ppm	<0.15
Higher Grade CRNO	0.005 - 0.010	< 0.015 N < 40 ppm T.O. :20-30ppm	< 0.2
Defense Grade	< 0.010	< 0.015 H <2ppm	Low Vacuum treated

Share of steel plant by process

REAL MERS

SMS shop process overview

Schematic of BOF Converter

Stages of BOF process

Oxygen Blowing

Tap Out & Transfer to Ladle Metallurgy Facility

GA of BOF converter charging

BOF blowing process

5 hole supersonic lanced design

BOF technical parameters

- Fluxes
 - Lime From NLCP
 - CD from NDP
 - Iron Ore

- Oxygen From Oxygen Plant and BOO plant
- Pressure 14 bar
- Flow rate 370-400 nM3/min
- 5 Hole Lances, 1 running & 1 Standby, equipped with emergency Nitrogen lifting

Concept of automatic steel making process

- Advanced slag control
- Bottom agitation
- Sub-lance
- Waste gas analyser
- Automatic slag detection and arrester
- Post combustion lance
- Slag-less lance

Tota the shall

Sub Lance

Benefits:

- Online and quick measurement of C, T, O, sample, bath ht.
- Helps to target the tapping temperature without interrupting the steel making process.
- Avoids frequent tilts of BOF Vessel for sample and temperature.
- Reduces tap to tap time

TSC probe TSO probe

^{हर} एक काम देश के नाम Temperature only probes

NLCP & NDP

- 300 TPD Annular shaft Lime Kilns 3
- 300 TPD Twin Shaft Dolomite Kiln 1
- Conveyor system for the same

Reactions during BOF process

Blowing Pattern at DSP

Tap to Tap process at BOF

दश के नाम

Steel Composition change during reaction

AT AT IT THE AND A AND A

Slag Composition change during reaction

AN REF HIT M

BOF converter tapping

Dissolved Oxygen in Steel

Dissolved oxygen in Steel

BOF end of blowing

- Oxygen 800 to 1200 ppm
- Process variable: Reblow/ Overblow

After tapping

- Oxygen ppm 50-100 ppm
- Quality & De-oxidising power of Ferro-Alloys

During Casting

- Less than 50 ppm for semi killed steel
- Less than 30 ppm for killed steel

Cleanliness requirement of various steel grades

Steel Product	Max Allowed Impurity Fraction	Max Allowed Inclusion Size
IF steels	[C]- 10-30 ppm, [N]≤40 ppm, T.O.≤40 ppm	
Automotive and deep-drawing Sheets	[C]≤30 ppm, [N]≤30 ppm	100µm
HIC resistant steel sour gas tubes	[P]≤50 ppm, [S] ≤10 ppm	
Bearings	T.O.≤10 ppm	15 µm
Wires	[N]≤60 ppm, T.O.≤30 ppm	20 µm
Heavy plate steels	[H]≤2 ppm, [N]=30-40 ppm, T.O.≤20 ppm	13 µm
CRNO	[N]≤30 ppm	
Plates for welding	[H]≤1.5 ppm	

Mixing phenomena in steel ladles

Stirring intensity is mainly controlled by gas flow rate

Secondary refining of steel

Stirring Intensity

- Efficiency of De-S also depends upon circulation rate of steel.
- Stirring helps in achieving nearly complete mass transfer between metal, slag.
- Intense stirring helps in increasing the kinetics of desulphurisation reaction
- High level of stirring energy can be achieved by higher argon flow rate and high bath temperature.

Ladle Furnaces 130T

Ladle Furnace(1 & 2)	(1 & 2) Furnace Transformer 25 MVA, 1		Danieli
	Crompton Greaves		
Ladle Furnace(3)	Furnace Transformer 25 MVA,	130 T	Eastern Metec
	ABB		
VAD Unit(1 No)	Furnace Transformer 15 MVA,	120 T	MESSO
	Stem Trento.		Metallurgie

The Iron- Iron Carbide phase diagram

AT AT AT ANA

Continuous Casting plant layout

BLOOM CASTING MACHINE

Billet Caster

Year of start up	1994	
Supplier	CONCAST ZURICH	
Туре	S 15-6	
Heat size (nominal)	120	t
Caster productivity	95	t/h
Number of strands	6	
Distance among stand axis	1100	
Dummy bar type	FLEXIBLE	

Bloom Caster

Sections: 160/210,160/230,200/200,150/300,150/350

Year of start up	2007	
Supplier	DANIELI	
Heat size (nominal)	120	t
Annual production	7,50,000	tpy
Number of Strands	4	

Bloom cum Round Caster

Sections : 240/350, 150/300, Round

Year of start up	2015	
Supplier	DANIELI Centro Met	
Heat size (nominal)	120	t
Annual production	7,50,000	tpy
Number of Strands	4	

BILLET CASTER SPECIFICATIONS

• Make:

- Machine Type:
- Number of strands:
- Machine Radius:
- Machine Productivity:
- Casting Sections:
- Ladle capacity:
- Ladle Support:
- Tundish Capacity:
- Tundish Level Control:
- Tundish Support:
- Tundish stream Control:
- Mould Tube:
- Mould Lubrication:
- Mould Level Control:
- Straightening:
- Casting speed:
- Cutting:
- Dummy Bar:

Concast standard S 15-6 6 6 m 125-140T/hr Machine 1: 100x100 mm2, Machine 2: 125x125 mm2 130 T (max) [Avg.: 120 T] Ladle turret with lifting system 13 T Load Cell on Tundish Car Liftable Tundish Car (convertible type) plug Multitaper, curved 1000mm long, Oil Radioactive Modular Type (4 modules/strand) 3-3.5 m/min Mechanical Shear (360 T) Not Rigid

BLOOM CASTER SPECIFICATIONS

Danieli

- Make:
- Machine Type:
- Number of strands:
- Machine Radius:
- Unbending radius:
- Machine Productivity:
- Metallurgical Length:
- Casting Sections:
- Ladle capacity:
- Ladle Support:
- Tundish Capacity:
- Tundish Level:
- Tundish Level Control:
- Tundish Support:
- Tundish stream Control:
- Steel Stream Protection:
- Mould Tube:
- Mould Lubrication:
- Mould Level Control:
- Electromagnetic Stirring:
- Oscillating unit:
- Straightening:
- Withdrawal speed:
- Cutting:
- Cutting Length:
- Dummy Bar:
- Cooling Bed:

3BLC904 4 9 m 16 m 125-140T/hr 25 m 160x210, 160x230, 150x350 (mm²) 130 T (max) [Avg.: 120 T] Ladle turret with lifting system 24 T (overflow at 26 T) 800 mm (overflow at 850 mm) Load Cell on Tundish Car Liftable Tundish Car (cantilever type) **Electromechanical Stopper Rod** Submerged Entry Nozzle (SEN) Multitaper, curved 1000mm long, **Casting Powder** Radioactive Positive for future Hydraulic Type Modular Type (4 modules/strand) $0.6 - 6 \, \text{m/min}$ Oxy cutting torch with sample cutting system 3.4 – 10 m Rigid 28m long, 12m wide

Defects in Continuous Casting

- Cracks
 - Surface cracks
 - Internal cracks
- Segregation
 - Macro segregation (Centre)
 - Micro segregation (Inter-dendritic, Inter-columner)
- Inclusions & Entrapments
 - Indigenous & Exogenous inclusions(D Reoxidation products, Refractory)
 - Surface Entrapments & Sub-Surface Entrapments (slag, mould powder, refractory etc.)

Quality Issues of Material Origin

- Manifestation as
 - Surface imperfection visible with naked eye or special test
 - Crack, Lamination, Sliver
- NDT failure : internal imperfection
 Originating from
 - Poor cleanliness : exogenous entrapment or endogenous NMI
 - Related to refining and casting process
 - Surface, subsurface, internal cracks
- लएक काम Related to specific grade & casting process

Measures in Ladle to control Entrapments

Free opening & slide-gate opening with shroud
 Ar shrouding to prevent O & N pick-up

Ar	30 lpm	~ 10 ppm N
Ar	60 lpm	~ 5
Ar	100 lpm	Nil

 Deep immersion of shroud in tundish
 Detection system to prevent slag carryover Or Enough steel in ladle before change-over

Measures in Tundish

- Suitable Flow modifier (turbulence inhibitor, argon diffuser etc)
 - Improved flow facilitates NMI floatation

□ Inert lining with better insulation

Tundish stopper with porous plug and Ar

Prevents contamination with clogged Al₂O₃

Measures in Mould

Control of mould level fluctuation

- Prevents slag / powder entrapment
- Avoiding sudden change in casting speed
 - Prevents slag / powder entrapment
- Argon shrouding to prevent nozzle clogging

TYPES OF INTERNAL DEFECTS

- 1. Longitudinal corner cracks.
- 2. Longitudinal off corner cracks.
- 3. Halfway cracks.
- 4. Spider cracks.
- 5. Diagonal cracks

Defects in CC products: Rhombodity

CHARACTERISTICS

- Difference between length of two diagonals > 10 mm
- More pronounced in steel grades with C from 0.15 to 0.30%
- •May lead to breakout in extreme cases

1. LONGITUDINAL CORNER CRACKS ASSOCIATED WITH RHOMBODITY – BILLETS & BLOOMS ..

REMEDIAL MEASURES

- Correct alignment of liquid stream into mould.
- Check mould tube alignment.
- Replace mould.
- Identical nozzle parameters such as water flow, spray angle and height of all nozzles on each side of the billet.
- Check for clogged nozzles.
- Check nozzle performance.

Various types of defects in steel billets

Shell formation in Continuous casting mould

- $\eta =$ Viscosity
- $V_m =$ Mould velocity
- V_c = Casting Speed
- **dl** = Liquid slag layer
- η_s = Coeff. of solid friction
- **H** = **Ferro-static force**

Powder slag film between strand and mould contribute:

• Liquid Friction : Dominates just below meniscus

 $f_1 = \eta x (V_m - V_c) / dI$

• Solid Friction: Acts in lower part of mould

 $\mathbf{f}_{s} = \eta_{s} \mathbf{x} \mathbf{H}$

Problems associated with weak shell

Multiple punctures in solidified steel shell, the size of punctures in this strand is larger as comparted to strand-02

Caster break out & metal splashing in cooling zones

Metal splash found in the mobile sector, just below the mould, in all 4 sides. रूप सेल मेरा आ सेल SAIL

Mould EMS in Continuous casting

Principle of liquid steel stirring Rotative stirrer

- Rotative stirrer acts like the stator of an asynchronous AC motor and the liquid steel represents the rotor
- Three phase/two phase power supply creates a rotating magnetic field within its pole gap.
- Rotating magnetic field induces a torque in the liquid steel passing through the stirrer
- Liquid steel, under the influence of this force, acts as the rotor of an AC motor and rotates around the axis of the cast product

Principle of liquid steel stirring Linear Stirrer

- Stator creates a travelling magnetic field
- This magnetic field induces a force inside liquid steel pointing towards the travelling direction
- Stirred zone confined to the length of stirrer

Rotational stirring superior in terms of fluid dynamics & metallurgical improvement

Steel quality improvement due to Mould EMS in Continuous casting

- Internal Quality improved by reduced segregation
- Larger equiaxed solidification structure
- Improved subsurface and internal cleanliness by a modified metal flow pattern
- •Parameters for casting widened (w.r.t. Temperature & Speed)

VAD process for wheel steel

सेल मेरा सेल SAIL

Process of casting wheel steel

Wheel steel making process

Rejected wheel at UT stage

Finished wheel

#4

#3

Molten steel casting #1

Block cutting Wheel forging & rolling #2

Overview of Last Five Year Performance

No. of Heats Per Day/Converter

Steel Making Operating Parameters : 2019-20

Parameters	BSP SMS-II	BSL SMS-II	DSP	RSP SMS-II	ISP	TATA Steel LD – 1	JSW SMS -2
BOF Lining Life (avg)	<u>9578</u>	3682.5	6104	6336	3066	5490#	4385#
Avg. BOF Tapping Temp (°C)	1650	1671	1671	1685	1684	1661	1662
Tap to Tap Time (min)	55	56	53	59	80	<u>40</u>	57
BOF Converter Yield (%)	86.30	88.40	91.02	89.64	<u>91.78</u>	-	-
Sp. Oxygen Consp. (Nm ³ /tcs)	62.86	56.02	54.10	50.30	53.42	<u>47.80</u>	50.52
Converter Utilization (%)	78.10	78.22	85.98	89.91	64.17	-	-

Rest figures are underlined

100% Combined blowing

Continuous Iron ore charging in BOF

Modified design

Rolling of TMT bars from 125*125 concast billets

In-house modification- 25% increase in productivity of billet caster

Billet caster

18T Tundish facility

QNC introduced

Modification in cooling circuits

Merchant Mill

Installation additional cooling pipe

Installation of additional stands

Modification of guides & roll passes

BOF converter shell changing project during Covid-19 times

दश के न

BOF converter shell changing project during Covid-19 times

SMS @ group

PROJECT : REPLACEMENT OF BOF CONVERTER SHELLS, PROVISION OF BOTTOM STIRRING AND NEW SECONDARY EMISSION CONTROL SYSTEM AT SAIL DURGAPUR STEEL PLANT

CONTRATUAL SHUTDOWN PERIOD - 55 DAYS SHUT DOWN COMPLETED - 40 DAYS (FIRST HEAT) CUSTOMER - SAIL, DSP Durgapur CONSULTANT : CENTRE FOR ENGINEERING & TECHNOLOGY (CET) CONTRACT PARTNER - SMS GROUP GmbH & SMS INDIA PVT. LTD ERECTION PARTNER - Edifice Engineering, T.M. Electrical, RHI MAGNESITA

DSP & ASP collaboration

AT AN AT IN

Durgapur Steel Plant

सेल SAIL